Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements
نویسندگان
چکیده
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
منابع مشابه
M Echanisms of Active Sensing
Active sensing and sensorymotor loops Sensation is an active process whereby sensory organs continuously and actively sample the external world, usually by physical movements. Thus, to acquire meaningful information about the surrounding, the brain must integrate sensory signals with information about the active movement that induced them. We study how sensor motion and sensory signals interact...
متن کاملParallel pathways from motor and somatosensory cortex for controlling whisker movements in mice
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delin...
متن کاملOptogenetic Stimulation of Cortex to Map Evoked Whisker Movements in Awake Head-Restrained Mice
Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whiske...
متن کاملSerotonin Regulates Rhythmic Whisking
Many rodents explore their environment by rhythmically palpating objects with their mystacial whiskers. These rhythmic whisker movements ("whisking"; 5-9 Hz) are thought to be regulated by an unknown brainstem central pattern generator (CPG). We tested the hypothesis that serotonin (5-HT) inputs to whisking facial motoneurons (wFMNs) are part of this CPG. In response to exogenous serotonin, wFM...
متن کاملLong-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation.
Mice actively explore their environment by rhythmically sweeping their whiskers. As a consequence, neuronal activity in somatosensory pathways is modulated by the frequency of whisker movement. The potential role of rhythmic neuronal activity for the integration and consolidation of sensory signals, however, remains unexplored. Here, we show that a brief period of rhythmic whisker stimulation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011